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Abstract

In this paper we present a new algorithmic approach for computing the Hilbert function of a finitely
generated difference-differential module equipped with the natural double filtration. The approach is based
on a method of special Gröbner bases with respect to “generalized term orders” on Nm

× Zn and on
difference-differential modules. We define a special type of reduction for two generalized term orders in
a free left module over a ring of difference-differential operators. Then the concept of relative Gröbner
bases w.r.t. two generalized term orders is defined. An algorithm for constructing these relative Gröbner
bases is presented and verified. Using relative Gröbner bases, we are able to compute difference-differential
dimension polynomials in two variables.
c© 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

The notion of Gröbner basis, being a powerful tool to solve various problems by algorithmic
way in polynomial ideal theory, has been explored in differential algebra and difference-
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differential algebra by many researchers. Although the attempt to imitate Gröbner bases in
the context of differential ideals of a ring of differential polynomials has been unsuccessful to
date, the theory of Gröbner bases in free modules over various rings of differential operators
has been developed, see Noumi (1988), Takayama (1989), Oaku and Shimoyama (1994), Carra
Ferro (1997), Insa and Pauer (1998), Pauer and Unterkircher (1999), Levin (2000) and Zhou and
Winkler (2006). It has been shown that the notion of Gröbner basis is essential for many problems
of linear difference-differential equations such as the dimension of the space of solutions and the
computation of difference-differential dimension polynomials.

The concept of the differential dimension polynomial was introduced in Kolchin (1964) as
a dimensional description of some differential field extension. Johnson (1974) proved that the
differential dimension polynomial of a differential field extension coincides with the Hilbert
polynomial of some filtered differential module. This result allowed to compute differential
dimension polynomials using the Gröbner basis technique. Since then various problems of
differential algebra involving differential dimension polynomials have been studied; see Levin
and Mikhalev (1987) and Kondrateva et al. (1998). The concepts of the difference dimension
polynomial and the difference-differential dimension polynomial were introduced first in Levin
(1978) and Dzhavadov (1979). Some additional properties of such a polynomial can be found in
Chapters 6 and 8 of Kondrateva et al. (1998). These polynomials play the same role in difference
algebra (resp. difference-differential algebra) as Hilbert polynomials in commutative algebra or
differential dimension polynomials in differential algebra. The notion of difference-differential
dimension polynomial can be used for the study of dimension theory of difference-differential
field extensions and of systems of algebraic difference-differential equations.

By the classical Gröbner basis method for computing Hilbert polynomials, one can study
difference-differential dimension polynomials φ(t) associated with a difference-differential
module M . This approach is based on the fact that the ring of difference-differential operators
over the difference-differential field R is isomorphic to the factor ring of the ring of non-
commutative polynomials R[x1, . . . , xm+2n] modulo the ideal I , where xi = δi , xi a =

axi + δi (a) xm+ j = α j (an isomorphism on R), xm+ j a = α j (a)xm+ j , xm+n+ j = α−1
j ,

xm+n+ j a = α−1
j (a)xm+n+ j for 1 ≤ i ≤ m, 1 ≤ j ≤ n, and a ∈ R, and I

is generated by the polynomials xm+ j xm+n+ j − 1 for 1 ≤ j ≤ n. However, a similar
approach to difference-differential dimension polynomials in two variables is unsuccessful.
Levin (2000) investigated the difference-differential dimension polynomials in two variables
by the characteristic set approach. Levin also gave an algorithm to compute the dimension
polynomials if the characteristic sets have been obtained. The method of Levin is rather delicate
but no general algorithm for computing the characteristic set is given. In his recent paper Levin
(2007) deals with difference-differential operators, but does not directly consider their inverses.
In this paper we explicitly consider the inverses of difference operators (automorphisms), and
therefore we have to generalize term orders and to include also terms with negative exponents.
The concept of Gröbner bases w.r.t. several orderings in Levin (2007) is rather involved. We
present an alternative concept of relative Gröbner bases. Based on this simpler concept we can
also exhibit examples of the theory.

In this paper we introduce a new concept, relative difference-differential Gröbner bases, for
algorithmically computing the difference-differential dimension polynomials in two variables.
Our notion of relative Gröbner basis is based on two generalized term orders on Nm

× Zn .
We define a special type of reduction for two generalized term orders in a free left module
over a ring of difference-differential operators. Then the concept of relative Gröbner bases
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w.r.t. two generalized term orders is defined. An algorithm for constructing these Gröbner basis
counterparts is presented and verified. Using the relative Gröbner basis algorithm, it is possible
to compute difference-differential dimension polynomials in two variables. The results obtained
improve essentially theories of Levin (2000), in which the existence of the difference-differential
dimension polynomial was proved via characteristic set.

This paper is divided into 4 sections. Section 1 is introduction and Section 2 is preliminaries.
Most material in the preliminaries is based on Levin (2000) and Zhou and Winkler (2006). In
Section 3 we design the relative reduction algorithm, give the definition of relative Gröbner
bases and S-polynomials, as well as the Buchberger algorithm for computation of relative
Gröbner bases. Some results are proved already in Zhou and Winkler (2006). In Section 4 we
describe the approach to compute difference-differential dimension polynomials in two variables
via relative Gröbner bases. We also need Levin’s theorem on the existence of the difference-
differential dimension polynomial and the algorithm for counting suitable sets of “non-leading
terms” Card Ur,s (see Theorem 4.1).

2. Preliminaries

In this paper Z, N, Z− and Q will denote the sets of all integers, all nonnegative integers,
all nonpositive integers, and all rational numbers, respectively. By a ring we always mean an
associative ring with a unit. By the module over a ring A we mean a unitary left A-module.

Definition 2.1. Let R be a commutative noetherian ring, ∆ = {δ1, . . . , δm} a set of derivations
and Σ = {σ1, . . . , σn} a set of automorphisms of the ring R, which commute with each other;
i.e. α ◦ β = β ◦ α for all α, β ∈ ∆ ∪ Σ . Then R is called a difference-differential ring with the
basic set of derivations ∆ and the basic set of automorphisms Σ , or shortly a ∆–Σ -ring. If R is
a field, then it is called a ∆–Σ -field. �

Throughout the paper we suppose that R is a ∆–Σ -field and elements of ∆ ∪ Σ are free
generators of a commutative semigroup. Then Λ will denote the commutative semigroup of
terms, i.e. elements of the form

λ = δ
k1
1 · · · δkm

m σ
l1
1 · · · σ ln

n , (2.1)

where (k1, . . . , km) ∈ Nm and (l1, . . . , ln) ∈ Zn . This semigroup contains the free commutative
semigroup Θ generated by the set ∆ and free commutative semigroup Γ generated by the set Σ .

Definition 2.2. Let R and Λ be as above. The free R-module generated by Λ is denoted by D.
Elements of D are of the form∑

λ∈Λ

aλλ, (2.2)

where aλ ∈ R for all λ ∈ Λ and only finitely many coefficients aλ are different from zero.
They will be called difference-differential operators (or shortly a ∆–Σ -operators) over R. Two
∆–Σ -operators

∑
λ∈Λ aλλ and

∑
λ∈Λ bλλ are equal if and only if aλ = bλ for all λ ∈ Λ. �

The free R-module D can be equipped with a natural ring structure. It is called the ring of
difference-differential operators (or shortly the ring of ∆–Σ -operators) over R. Note that

δa = aδ + δ(a), τa = τ(a)τ, (2.3)
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for all a ∈ R, δ ∈ ∆, τ ∈ Σ ∪ {σ−1
|σ ∈ Σ }. The terms λ ∈ Λ do not commute with the

coefficients aλ ∈ R.
A left D-module M is called a difference-differential module (or a ∆–Σ -module). If M is

finitely generated as a left D-module, then M is called a finitely generated ∆–Σ -module.

Definition 2.3. A family of subsets {Z(n)j , j = 1, . . . , k} of Zn is called an orthant decomposition

of Zn and Z(n)j is called the j th orthant of the decomposition, if

Zn
=

k⋃
j=1

Z(n)j

and for all j = 1, . . . , k the following conditions hold:

(i) (0, . . . , 0) ∈ Z(n)j , and Z(n)j does not contain any pair of inverse elements c = (c1, . . . , cn) 6=

0 and c−1
= (−c1, . . . ,−cn);

(ii) Z(n)j is a finitely generated subsemigroup of Zn , which is isomorphic to Nn as a semigroup;

(iii) the group generated by Z(n)j is Zn .

We extend orthant decompositions from Zn to Nm
× Zn :

Let {Z(n)j , j = 1, . . . , k} be an orthant decomposition of Zn . Then we call {Nm
× Z(n)j , j =

1, . . . , k} an orthant decomposition of Nm
× Zn . �

Example 2.1. Let {Z(n)1 , . . . ,Z(n)2n } be all distinct Cartesian products of n sets each of which

is either N or Z−. This is an orthant decomposition of Zn . The set of generators of Z(n)j as a
semigroup is

{(c1, 0, . . . , 0), (0, c2, 0, . . . , 0), . . . , (0, . . . , 0, cn)},

where c j is either 1 or −1, j = 1, . . . , n. We call this decomposition the canonical orthant
decomposition of Zn . �

Definition 2.4. Let {Z(n)j , j = 1, . . . , k} be an orthant decomposition of Zn . Let E =

{e1, . . . , eq} be a set of q distinct elements. A total order ≺ on Nm
×Zn

×E is called a generalized
term order on Nm

×Zn
× E with respect to the decomposition, if the following conditions hold:

(i) (0, . . . , 0, ei ) is the smallest element in Nm
× Zn

× {ei }, ei ∈ E ,
(ii) if (a, ei ) ≺ (b, e j ), then for any c such that c and b are in the same orthant, (a + c, ei ) ≺

(b + c, e j ), where a, b, c ∈ Nm
× Zn , ei , e j ∈ E . �

Example 2.2. Given the canonical orthant decomposition of Zn , an order “≺′” in E =

{e1, . . . , eq}, for two elements (a, ei ) = (k1, . . . , km, l1, . . . , ln, ei ) and (b, e j ) =

(r1, . . . , rm, s1, . . . , sn, e j ) of Nm
× Zn

× E define:

|a|1 =

m∑
j=1

k j , |a|2 =

n∑
j=1

|l j |.

(a, ei ) ≺ (b, e j ) ⇐⇒ (|a|1, |a|2, ei , k1, . . . , km, |l1|, . . . , |ln|, l1, . . . , ln)

< (|b|1, |b|2, e j , r1, . . . , rm, |s1|, . . . , |sn|, s1, . . . , sn) in lexicographic order.

Then “≺” is a generalized term order on Nm
× Zn

× E . �
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Let Λ be the semigroup of terms of the form (2.1). Since Λ is isomorphic to Nm
× Zn as a

semigroup, a generalized term order “≺” on Nm
× Zn induces an order on Λ. We call this

a generalized term order on Λ. The notion of generalized term orders can be easily extended
to finitely generated free D-modules. The following result can be found in Zhou and Winkler
(2006).

Lemma 2.1. Given an orthant decomposition of Zn and a generalized term order “≺” on
Nm

× Zn
× E, every strictly descending sequence in Nm

× Zn
× E is finite. In particular, any

subset of Nm
× Zn

× E contains a smallest element. �

3. Relative Gröbner bases in finitely generated difference-differential modules

Let R be a ∆–Σ -field and D be the ring of ∆–Σ -operators over R, and let F be a finitely
generated free D-module (i.e. a finitely generated free difference-differential module) with a set
of free generators E = {e1, . . . , eq}. Then F can be considered as an R-module generated by the
set of all elements of the form λei (i = 1, . . . , q , where λ ∈ Λ). This set will be denoted by ΛE
and its elements will be called terms of F . In particular the elements of Λ will be called terms
of D. If “≺” is a generalized term order on Nm

× Zn
× E then “≺” induces a generalized term

order on ΛE .
It is clear that every element f ∈ F has a unique representation as a linear combination of

terms:

f = a1λ1e j1 + · · · + adλde jd (3.1)

for some nonzero elements ai ∈ R (i = 1, . . . , d) and some distinct elements λ1e j1 , . . . , λde jd ∈

ΛE .
Let “≺” be a generalized term order on ΛE , f ∈ F be of the form (3.1). Then

lt( f ) := max
≺

{λi e ji |i = 1, . . . , d}

is called the leading term of f . If λi e ji = lt( f ), then lc( f ) = ai is called the leading coefficient
of f .

Now we are going to construct a special reduction algorithm in the difference-differential
module F . In what follows we always assume that an orthant decomposition of Zn is given as
well as a generalized term order with respect to this decomposition. We need some lemmas which
have been proved in Zhou and Winkler (2006) to describe the various properties in difference-
differential modules.

Definition 3.1. Let λ be of the form (2.1). Then the subset Λ j of Λ,

Λ j = {λ = δ
k1
1 · · · δkm

m σ
l1
1 · · · σ ln

n | (l1, . . . , ln) ∈ Z(n)j },

where Z(n)j is the j th orthant of the decomposition of Zn , is called j th orthant of Λ. Let F be a
finitely generated free D-module and ΛE be the set of terms of F . Then

Λ j E = {λei | λ ∈ Λ j , ei ∈ E}

is called j th orthant of ΛE . �

Obviously, from Definition 2.3, if “≺” is a generalized term order on Λ and ξ ≺ λ, then
ηξ ≺ ηλ holds for any η in the same orthant as λ.
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Lemma 3.1. Let λ ∈ Λ and a ∈ R, “≺” be a generalized term order on ΛE ⊆ D. Then

λa = a′λ+ ξ,

where a′
= α(a) for some α ∈ Γ (see (2.1)), and if a 6= 0 then a′

6= 0; ξ ∈ D with lt(ξ) ≺ λ

and all terms of ξ are in the same orthant as λ. �

In general lt(λ f ) = λlt( f ) does not hold, a slightly weaker property is expressed in the
following lemma.

Lemma 3.2. Let F be a finitely generated free D-module and f ∈ F \ {0}. Then the following
assertions hold:

(i) If λ ∈ Λ, then lt(λ f ) = max≺{λui } where ui are terms of f , and lt(λ f ) = λu for a unique
term u of f .

(ii) If lt( f ) ∈ Λ j E then lt(λ f ) = λlt( f ) ∈ Λ j E holds for any λ ∈ Λ j . �

Lemma 3.3. Let F be a finitely generated free D-module and f ∈ F \ {0}. Then for each j there
exists some λ ∈ Λ and a term u j of f such that

lt(λ f ) = λu j ∈ Λ j E .

Furthermore, the term u j of f is unique: if lt(λ1 f ) = λ1u j1 ∈ Λ j E and lt(λ2 f ) = λ2u j2 ∈ Λ j E
then u j1 = u j2 . We will write lt j ( f ) for the term u j . �

If h =
∑

i∈I biλi ∈ D and f =
∑

j∈J c j u j ∈ F , then h f =
∑

i∈I, j∈J bi c′

jλi u j (as
in Lemma 3.1). Since some of the terms λi u j may be equal and vanish in h f , it would be
problematic if lt(h f ) ≺ λi u j might occur for some λi and u j . The following lemma asserts
that this undesirable situation cannot occur.

Lemma 3.4. Let f ∈ F \ {0}, h ∈ D \ {0}. Then lt(h f ) = max≺{λi uk} where λi are terms of h
and uk are terms of f . Therefore lt(h f ) = λu for a unique term λ of h and a unique term u of
f . �

Let “≺” be a generalized term order on ΛE . For our purpose we need to consider a special
type of reduction relative to another generalized term order “≺′” on ΛE . An algorithm for the
reduction is described in the following theorem.

Theorem 3.1. Let “≺” and “≺
′” be two generalized term orders on ΛE. Let g1, . . . , gp ∈

F \ {0} and f ∈ F. Then

f = h1g1 + · · · + h pgp + r (3.2)

for some elements h1, . . . , h p ∈ D and r ∈ F such that

(i) hi = 0 or lt≺(hi gi ) � lt≺( f ), i = 1, . . . , p; (By Lemma 3.4 this means that λu � lt≺( f )
for all terms λ of hi and all terms u of gi .)

(ii) r = 0 or lt≺(r) � lt≺( f ) such that

lt≺(r) /∈ {lt≺(λgi ) | lt≺′(λgi ) �
′ lt≺′(r), λ ∈ Λ, i = 1, . . . , p}.

Proof. The elements h1, . . . , h p ∈ D and r ∈ F can be computed as follows:
First set r = f and hi = 0, i = 1, . . . , p.
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While r 6= 0 and lt≺(r) = lt≺(λi gi ) such that lt≺′(λi gi ) �
′ lt≺′(r) for an element λi ∈ Λ,

then

λi gi = ci lt≺(λi gi )+ ξi

ci lt≺(λi gi ) = λi gi − ξi ,

where ci = lc≺(λi gi ) and lt≺(ξi ) ≺ lt≺(λi gi ). Therefore

r = lc≺(r)lt≺(r)+ · · · = lc≺(r)lt≺(λi gi )+ · · · =
lc≺(r)

ci
(λi gi − ξi )+ · · · ,

where all terms in · · · ≺ lt≺(r) = lt≺(λi gi ).
Put bi =

lc≺(r)
ci

and ri =
lc≺(r)

ci
· (−ξi )+ · · ·. Then

r = biλi gi + ri . (3.3)

Now we may replace r by ri and hi by hi + biλi . Since in each step we have

lt≺(ri ) ≺ lt≺(λi gi ) � lt≺(r) � lt≺( f ),

by Lemma 2.1, the algorithm above terminates after finitely many steps. This completes the
proof. �

Definition 3.2. Let “≺” and “≺′” be two generalized term orders on ΛE . Let g1, . . . , gp ∈

F \{0} and f ∈ F . Suppose that the Eq. (3.2) holds and that the conditions (i), (ii) in Theorem 3.1
are satisfied. If r 6= f we say that f can be ≺-reduced to r modulo {g1, . . . , gp} relative to ≺

′. In
case r = f and hi = 0, i = 1, . . . , p, we say that f is ≺-reduced modulo {g1, . . . , gp} relative
to ≺

′. �

Unlike the difference-differential reduction for one generalized term order in Zhou and
Winkler (2006), in every step of the relative reduction we reduce the term lt≺(r) = lt≺(λi gi )

only if lt≺′(λi gi ) �
′ lt≺′(r). This is why we call the reduction “relative to ≺

′”.

Example 3.1. Let the sets ∆ and Σ consist of a single δ and a single σ , and let D be the ring
of ∆–Σ -operators over R. Choose the canonical orthant decomposition on Z as in Example 2.1
and define the generalized term orders ≺ and ≺

′ on terms of D as follows:

δkσ l
≺ δrσ s

⇐⇒ (|l|, k, l) < (|s|, r, s) in lexicographic order,

δkσ l
≺

′ δrσ s
⇐⇒ (k, |l|, l) < (r, |s|, s) in lexicographic order.

Given f = δ3σ − σ−1, g = δ2
+ σ , then lt≺( f ) = δ3σ = lt≺(δ3g) = lt≺(δ5

+ δ3σ). But
lt≺′(δ3g) = δ5

�
′ lt≺′( f ) = δ3σ . So f is not ≺-reduced modulo g in the usual meaning, but f

is ≺-reduced modulo g relative to ≺
′. �

Definition 3.3. Let W be a submodule of the finitely generated free D-module F , ≺ and ≺
′ be

two generalized term orders on ΛE , and G = {g1, . . . , gp} a subset of W\{0}. Then G is called
a ≺-Gröbner basis of W relative to ≺

′ iff every f ∈ W\{0} can be ≺-reduced to 0 modulo G
relative to ≺

′. We will call it shortly a relative Gröbner basis of W if no confusion is possible.
Obviously, G = {g1, . . . , gp} ⊂ W\{0} is a ≺-Gröbner basis of W relative to ≺

′ if and only
if for every f ∈ W\{0} we have

lt≺( f ) ∈ {lt≺(λgi ) | lt≺′(λgi ) �
′ lt≺′( f ), λ ∈ Λ, i = 1, . . . , p}. �
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Remark. If we take the two generalized term orders ≺ and ≺
′ on ΛE as ≺=≺

′, then relative
reduction will be the usual reduction and a relative Gröbner basis will be a usual difference-
differential Gröbner basis as introduced in Zhou and Winkler (2006). So the concept of relative
Gröbner basis is a generalization of Gröbner bases in difference-differential modules.

Proposition 3.1. Let ≺ and ≺
′ be two generalized term orders on ΛE, G ⊂ W \{0} a ≺-Gröbner

basis of W relative to ≺
′, and f ∈ F. Then the following assertions hold:

(i) G is a Gröbner basis of W w.r.t. ≺ and ≺
′. So G generates the D-module W .

(ii) f ∈ W if and only if f = 0 or f can be ≺-reduced to 0 modulo G relative to ≺
′.

(iii) f ∈ W is ≺-reduced modulo G relative to ≺
′ if and only if f = 0.

Proof. (i) If f can be ≺-reduced to 0 modulo G relative to ≺
′, then f can be reduced to 0 modulo

G w.r.t. ≺ in the classical way. Therefore G is a Gröbner basis of W w.r.t. ≺.
In order to see that G is also a Gröbner basis of W w.r.t. ≺

′, we consider an arbitrary
f ∈ W\{0}. We write

f = h1g1 + · · · + h pgp

by the algorithm described in Theorem 3.1. Note that in every step of the relative reduction
algorithm we have

lt≺′(λi gi ) �
′ lt≺′(r).

From (3.3) we see that lt≺′(ri ) �
′ lt≺′(r). So if lt≺′(r) �

′ lt≺′( f ) then lt≺′(ri ) �
′ lt≺′( f ). In the

first step we set r = f . So in every step we have lt≺′(ri ) �
′ lt≺′( f ).

Moreover, if lt≺′(hi gi ) �
′ lt≺′(λi gi ) then lt≺′((hi + biλi )gi ) �

′ lt≺′(λi gi ). This means that
in every step we have lt≺′(hi gi ) �

′ lt≺′(ri ) �
′ lt≺′( f ) since in the first step we set hi = 0.

We conclude that f can be reduced to 0 modulo G w.r.t. ≺
′, i.e. G is a Gröbner basis of W

w.r.t. ≺
′.

(ii) and (iii) are obvious from Theorem 3.1 and Definition 3.3. �

Remark. Proposition 3.1(i) asserts that a relative Gröbner basis of W must be a Gröbner basis
of W w.r.t. ≺ and ≺

′. But the reverse conclusion is not true. For example, if {g1, . . . , gp} and
{g′

1, . . . , g′
q} are Gröbner bases of W w.r.t. ≺ and ≺

′ resp., then {g1, . . . , gp, g′

1, . . . , g′
q} is a

Gröbner basis of W w.r.t. ≺ and ≺
′. But it need not be a relative Gröbner basis of W .

Example 3.2. Let ≺ and ≺
′ be two generalized term orders on ΛE . If W is generated by one

element g ∈ F\{0}, then any finite subset G of W \ {0} containing g is a relative Gröbner basis
of W . In fact, 0 6= f ∈ W implies f = hg for some 0 6= h ∈ D. By Lemma 3.4, lt≺( f ) = λu =

max≺{λi uk} for a term λ of h and a term u of g, where λi are terms of h and uk are terms of
g. Then lt≺( f ) = lt≺(λg). Similarly, we have also that lt≺′( f ) = max≺′{λi uk} �

′ lt≺′(λg). By
Definition 3.3, G is a relative Gröbner basis of W . �

In Zhou and Winkler (2006) we have presented an algorithm for computing Gröbner bases
of difference-differential modules. In a similar manner we will now construct an algorithm for
computing relative Gröbner bases.

Definition 3.4. Let F be a finitely generated free D-module and f, g ∈ F\{0}. Let ≺ be a
generalized term order on ΛE . For every Λ j let V ( j, f, g) be a finite system of generators of the
R[Λ j ]-module

R[Λ j ]〈lt(λ f ) ∈ Λ j E | λ ∈ Λ〉 ∩ R[Λ j ]〈lt(ηg) ∈ Λ j E | η ∈ Λ〉.
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Then for every generator v ∈ V ( j, f, g)

S( j, f, g, v) =
v

lt j ( f )

f

lc j ( f )
−

v

lt j (g)

g

lc j (g)

is called an S-polynomial of f and g with respect to j and v. �

Theorem 3.2 (Generalized Buchberger Theorem in Zhou and Winkler (2006)). Let F be a free
D-module and ≺ be a generalized term order on ΛE, G be a finite subset of F\{0} and W be
the submodule in F generated by G. Then G is a Gröbner basis of W if and only if for all Λ j ,
for all gi , gk ∈ G and for all v ∈ V ( j, gi , gk), the S-polynomials S( j, gi , gk, v) can be reduced
to 0 by G. �

On the basis of Theorem 3.2, we can construct the algorithm of computing relative Gröbner
bases. Let F be a free D-module, ≺ and ≺

′ be two generalized term orders on ΛE . We will denote
the S-polynomials with respect to ≺ and ≺

′ by S( j, gi , gk, v) and S′( j, gi , gk, v) respectively.

Theorem 3.3. Let F be a free D-module, ≺ and ≺
′ be two generalized term orders on ΛE, G be

a finite subset of F\{0} and W be the submodule in F generated by G. Then G is a ≺-Gröbner
basis of W relative to ≺

′ if and only if G is a Gröbner basis with respect to ≺
′ of W and for all

Λ j , for all gi , gk ∈ G and for all v ∈ V ( j, gi , gk), the S-polynomials S( j, gi , gk, v) with respect
to ≺ can be ≺-reduced to 0 modulo G relative to ≺

′.
In other words, G is a ≺-Gröbner basis relative to ≺

′ if and only if all S′( j, gi , gk, v) can
be reduced (w.r.t. ≺

′) to 0 by G and all S( j, gi , gk, v) can be ≺-reduced to 0 modulo G relative
to ≺

′.

Proof. Suppose that G is a ≺-Gröbner basis of W relative to ≺
′. Since S( j, gi , gk, v) is an

element of W , then it follows from Proposition 3.1(ii) that S( j, gi , gk, v) can be ≺-reduced to 0
modulo G relative to ≺

′. Also, G is a Gröbner basis with respect to ≺
′ of W by Proposition 3.1(i).

On the other hand, let G be a finite subset of F\{0} and W be the submodule in F generated
by G. Suppose that for all Λ j , for all v ∈ V ( j, gi , gk) and for all gi , gk ∈ G, the S-polynomials
S( j, gi , gk, v) can be ≺-reduced to 0 by G relative to ≺

′, and G is a Gröbner basis with respect
to ≺

′ of W . For any f ∈ W\{0} we have to show that there are some λ ∈ Λ and g ∈ G such that
lt≺( f ) = lt≺(λg) and lt≺′(λg) �

′ lt≺′( f ).
Since W is generated by G and G is a Gröbner basis with respect to ≺

′ of W , we have

f =

∑
g∈G

hgg

for some {hg}g∈G ⊆ D such that

lt≺′(hgg) �
′ lt≺′( f ).

In the following we denote lt≺( f ) shortly by lt( f ). Let u = max≺{lt(hgg) | g ∈ G}. We
may choose the family {hg | g ∈ G} such that u is minimal, i.e. if f =

∑
g∈G h′

gg then
u � max≺{lt(h′

gg) | g ∈ G}. Note that u � lt(λg) for all terms λ of hg and all g ∈ G by
Lemma 3.4. Also we have lt≺′(λg) �

′ lt≺′( f ) for all terms λ of hg and all g ∈ G.
If lt( f ) = u = lt(hgg) for some g ∈ G, then it follows from Lemma 3.4 that there is a term λ

of hg such that lt( f ) = lt(λg) and lt≺′(λg) �
′ lt≺′( f ). Therefore the proof would be completed.

Hence it remains to show that lt( f ) ≺ u cannot hold.
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Suppose that lt( f ) ≺ u and let B = {g | lt(hgg) = u � lt( f )}. Then by Lemma 3.4 there is a
unique term λg of hg , g ∈ B, such that u = lt(λgg) � lt(ηgg) for any terms ηg 6= λg of hg . Let
cg be the coefficient of hg at λg . We have

f =

∑
g∈B

hgg +

∑
g /∈B

hgg =

∑
g∈B

cgλgg +

∑
g∈B

(hg − cgλg)g +

∑
g /∈B

hgg, (3.4)

where all terms appearing in the last two sums are ≺ u.
From Lemma 3.2(i), we may suppose vg is the term of g such that u = lt(λgg) = λgvg � λgv

for any terms v 6= vg of g. Let dg be the coefficient of g at vg . Then by Lemma 3.1,∑
g∈B

cgλgg =

∑
g∈B

cgλgdg

(
g

dg

)
=

∑
g∈B

cg(d
′
gλg + ξg)

(
g

dg

)

=

∑
g∈B

cgd ′
gλg

(
g

dg

)
+

∑
g∈B

cgξg

(
g

dg

)
(3.5)

for some elements d ′
g ∈ R and ξg ∈ D with all terms appear in the last sum are ≺ u. Also, by

Lemma 3.1, all terms of ξg are in the same orthant as λg and ≺
′ λg . Then all terms appear in the

last sum of (3.5) are ≺
′ lt≺′(λgg) �

′ lt≺′( f ).
Note that u appears only in∑

g∈B

cgd ′
gλg

(
g

dg

)
=

∑
g∈B

cgd ′
gλgvg +

∑
g∈B

cgd ′
gλg

(
g

dg
− vg

)

=

(∑
g∈B

cgd ′
g

)
u +

∑
g∈B

cgd ′
gλg

(
g

dg
− vg

)
and all terms appearing in the last sum are ≺ u. Since lt( f ) ≺ u it follows that

∑
g∈B cgd ′

g = 0.
Denote λg(

g
dg
) by rg , then∑

g∈B

cgd ′
gλg

(
g

dg

)
=

∑
g∈B

(cgd ′
g)rg =

∑
i,k

bi,k(rgi − rgk ) (3.6)

for some gi , gk ∈ B.
Since

rgi − rgk = λgi

(
gi

dgi

)
− λgk

(
gk

dgk

)
and λgi vgi = λgkvgk = u ∈ Λ j E for an Λ j , it follows from Lemma 3.3 that vgi = lt j (gi ),
vgk = lt j (gk), dgi = lc j (gi ), dgk = lc j (gk), λgi =

u
lt j (gi )

, λgk =
u

lt j (gk )
and then

rgi − rgk =
u

lt j (gi )

gi

lc j (gi )
−

u

ltk(gk)

gk

lc j (gk)

with lt(rgi − rgk ) ≺ u .
Note that for all Λ j , for all gi , gk and for all v ∈ V ( j, gi , gk), the S-polynomials

S( j, gi , gk, v) can be ≺-reduced to 0 modulo G relative to ≺
′. We have

rgi − rgk =

∑
g∈G

pgg (3.7)
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with lt(pgg) ≺ u and lt≺′(pgg) �
′ max≺′{lt≺′(λgi gi ), lt≺′(λgk gk)} �

′ lt≺′( f ).
Replace the first sum on the right-hand side of (3.4) by (3.5), and replace the first sum in the

right of (3.5) by (3.6); then replace rgi − rgk on the right-hand side of (3.6) by (3.7). We get
another form of f =

∑
g∈G h′

gg such that

u � max
≺

{lt(h′
gg) | g ∈ G} and lt≺′(h′

gg) �
′ lt≺′( f ),

which is a contradiction to the minimality of u. This completes the proof of the theorem. �

Example 3.3. If W is a submodule of F generated by a finite set G and every g ∈ G is a
monomial, i.e. consists of only one term, then G is a relative Gröbner basis of W . In fact in this
case all S-polynomials S( j, gi , gk, v) and S′( j, gi , gk, v) are 0. By Theorem 3.3 this implies that
G is a relative Gröbner basis of W . �

Following Theorem 3.3, the algorithm for computing a relative Gröbner basis can be divided
into two parts. The first part deals with S′( j, gi , gk, v) and determines a Gröbner basis w.r.t.
≺

′. Then, the second part deals with S( j, gi , gk, v) and determines a relative Gröbner basis.
Similar to the algorithm for computing a Gröbner basis w.r.t. a generalized term order in Zhou
and Winkler (2006) Theorem 3.3, we have the following algorithm.

Theorem 3.4 (Buchberger’s Algorithm for computing Relative Gröbner Bases). Let F be a free
D-module, ≺ and ≺

′ be two generalized term order on ΛE, G be a finite subset of F\{0}

and W be the submodule in F generated by G. For each Λ j and f, g ∈ F\{0} let V ( j, f, g),
S( j, f, g, v) and S′( j, f, g, v) be as in Definition 3.4 w.r.t. ≺ and ≺

′, respectively. Then by the
following algorithm a ≺-Gröbner basis of W relative to ≺

′ can be computed:
Input: G = {g1, . . . , gµ}, a set of generators of W

≺ and ≺
′, two generalized term orders on ΛE

output: G ′′
= {g′′

1 , . . . , g′′
ν }, a ≺-Gröbner basis of W relative to ≺

′

Begin
G ′

:= G ;
While there exist f, g ∈ G ′ and v ∈ V ( j, f, g) such that

S′( j, f, g, v) is reduced (w.r.t. ≺
′) to r 6= 0 by G ′

Do G ′
:= G ′

∪ {r}

Endwhile ;
G ′′

:= G ′ ;
While there exist f, g ∈ G ′′ and v ∈ V ( j, f, g) such that

S( j, f, g, v) is ≺-reduced to r 6= 0 by G ′′ relative to ≺
′

Do G ′′
:= G ′′

∪ {r}

Endwhile
End �

4. Computing difference-differential dimension polynomials using relative Gröbner bases

Let R be a ∆–Σ -field, D the ring of ∆–Σ -operators over R, M a finitely generated ∆–Σ -
module (i.e. a finitely generated difference-differential module), F a finitely generated free ∆–Σ
module. We will continue to use the notations and conventions of the preceding sections.

Now we consider difference-differential dimension polynomials ψA(t1, t2) in two variables t1
and t2 by the approach of relative difference-differential Gröbner bases.
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Choose the canonical orthant decomposition on Zn as in Example 2.1 and define the
generalized term orders “≺” and “≺′” on ΛE of the terms of F as follows: for λ =

δ
k1
1 · · · δ

km
m σ

l1
1 · · · σ

ln
n we set

|λ|1 := k1 + · · · + km and |λ|2 := |l1| + · · · + |ln|;

also for λei ∈ ΛE we set

|λei |1 := |λ|1 and |λei |2 := |λ|2.

We write <lex for the lexicographic order.
Now for λei = δ

k1
1 · · · δ

km
m σ

l1
1 · · · σ

ln
n ei and µe j = δ

r1
1 · · · δ

rm
m σ

s1
1 · · · σ

sn
n e j we define

λei ≺ µe j :⇐⇒ (|λ|2, |λ|1, ei , k1, . . . , km, |l1|, . . . , |ln|, l1, . . . , ln)
<lex
(|µ|2, |µ|1, e j , r1, . . . , rm, |s1|, . . . , |sn|, s1, . . . , sn),

and

λei ≺
′ µe j :⇐⇒ (|λ|1, |λ|2, ei , k1, . . . , km, |l1|, . . . , |ln|, l1, . . . , ln)

<lex
(|µ|1, |µ|2, e j , r1, . . . , rm, |s1|, . . . , |sn|, s1, . . . , sn).

For u =
∑
λ∈Λ aλλ ∈ D we define

|u|1 := max{|λ|1 | aλ 6= 0} and |u|2 := max{|λ|2 | aλ 6= 0}.

We may consider D as a bifiltered ring with the bifiltration (Drs)r,s∈Z such that Drs = {u ∈

D | |u|1 ≤ r, |u|2 ≤ s} for r, s ∈ N and Drs = {} if at least one of the numbers r, s is
negative. Obviously

⋃
{Drs | r, s ∈ Z} = D, Drs ⊆ Dr+1,s , Drs ⊆ Dr,s+1 for any r, s ∈ Z and

Dkl Drs = Dr+k,s+l for any r, s, k, l ∈ Z.
Let M be a finitely generated left D-module with generators h1, . . . , hq . Let

Mrs = Drsh1 + · · · + Drshq

for any r, s ∈ Z. Then (Mrs)r,s∈Z is an excellent bifiltration of M , i.e. every (Mrs) is a finitely
generated R-module and Dkl Mrs = Mr+k,s+l .

Definition 4.1. A polynomial ψ(t1, t2) in Q[t1, t2] is called a (bivariate) numerical if ψ(t1, t2) ∈

Z for all sufficiently large (r1, r2) ∈ Z2, i.e. there exists a tuple (s1, s2) ∈ Z2 such that
ψ(r1, r2) ∈ Z for all integers r1, r2 ∈ Z with ri ≥ si (1 ≤ i ≤ 2).

The numerical polynomial ψ(t1, t2) is called (bivariate) difference-differential dimension
polynomial associated with M , if

(i) deg ψ ≤ m + n, degt1ψ ≤ m, and degt2ψ ≤ n and
(ii) ψ(t1, t2) = dimR Mt1,t2 for all sufficiently large t1, t2 ∈ N. �

Levin (2000) investigated bivariate difference-differential dimension polynomials using the
characteristic set. The method of Levin is rather delicate but no algorithm for computing the
characteristic set is described. We will show that, by the method of relative difference-differential
Gröbner bases, the bivariate difference-differential dimension polynomials can be computed.
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Theorem 4.1. Let R be a ∆–Σ -field, D and M be as above, in particular let M have the
generators h1, . . . , hq . Let F be a free ∆–Σ module with a basis e1, . . . , eq and π : F −→ M
the natural ∆–Σ epimorphism of F onto M (π(ei ) = hi for i = 1, . . . , q).

Let ≺ and ≺
′ be the generalized term orders on ΛE of the terms of F defined above. Consider

the submodule N = ker π of F and let G = {g1, . . . , gp} be a ≺-Gröbner basis of N relative to
≺

′. Let

Ur,s =
{
w ∈ ΛE

∣∣ |w|1 ≤ r, |w|2 ≤ s, and w 6= lt≺(λgi ) for all λ ∈ Λ, gi ∈ G
}

∪{
w ∈ ΛE

∣∣ |w|1 ≤ r, |w|2 ≤ s,

and |lt≺′ (λgi )|1 > r for all λ ∈ Λ, gi ∈ G s.t. w = lt≺(λgi )
}
.

Then the bivariate difference-differential dimension polynomial ψ associated with M is the
cardinality of U, i.e.

ψ(r, s) =
∣∣Ur,s

∣∣.
Proof. First, let us show that every element λhi (i = 1, . . . , q, λ ∈ Λ, |λ|1 ≤ r , |λ|2 ≤ s), that
does not belong to π(Ur,s), can be written as a finite linear combination of elements of π(Ur,s)

with coefficients from R. λhi /∈ π(Ur,s) implies λei /∈ Ur,s , so we have λei = lt≺(λ′ g j ) for
some λ′

∈ Λ, g j ∈ G, and |[lt≺′(λ′g j )]|1 ≤ r . Therefore

λ′ g j = a jλei +

∑
ν

aνλνeν,

where a j 6= 0 and aν 6= 0 for finitely many aν . Obviously, λνeν ≺ λei = lt≺(λ′ g j ). Then by the
definition of ≺, |λν |2 ≤ s. On the other hand, since |[lt≺′(λ′g j )]|1 ≤ r and λνeν ≺

′ lt≺′(λ′ g j ),
it follows from the definition of ≺

′ that |λν |1 ≤ r . Now note that G ⊆ N = ker(π), we have
0 = π(g j ) and

0 = λ′π(g j ) = π(λ′ g j ) = a jπ(λei )+

∑
ν

aνπ(λνeν) = a jλhi +

∑
ν

aνλνhν .

So we see that λhi is a finite linear combination with coefficients from R of some elements of
the form λνhν (1 ≤ ν ≤ q) such that |λν |1 ≤ r , |λν |2 ≤ s and λνeν ≺ λei .

If there are some λνhν /∈ π(Ur,s), then we may repeat the same procedure with λhi replaced
by λνhν . Thus, by induction on λe j (λ ∈ Λ, 1 ≤ ν ≤ q) with respect to the order ≺ we obtain
that

λhi =

∑
µ

bµλµhµ

such that |λµ|1 ≤ r , |λµ|2 ≤ s and λµhµ ∈ π(Ur,s) for all µ.
Now we have to prove that the set π(Ur,s) is linearly independent over R. Suppose that∑l
i=1 aiπ(ui ) = 0 for some u1, . . . , ul ∈ Ur,s , a1, . . . , al ∈ R. Then h =

∑l
i=1 ai ui ∈ N .

By the definition of Ur,s we see that

ui /∈

{ ⋃
i=1,...,p

{
lt≺(λgi )

∣∣ |lt≺′(λgi )|1 ≤ r, λ ∈ Λ
}}
.
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This means

lt≺(h) /∈

{ ⋃
i=1,...,p

{
lt≺(λgi )

∣∣ lt≺′(λgi ) �
′ lt≺′(h), λ ∈ Λ

}}
.

In fact, |lt≺′(h)|1 = |u j |1 ≤ r and if ui = lt≺(h) = lt≺(λgi ) then |lt≺′(λgi )|1 > r . So by the
definition of ≺

′ we have lt≺′(λgi ) 6�
′ lt≺′(h).

Therefore, h is ≺-reduced modulo G relative to ≺
′. By Proposition 3.1(iii) we get h = 0 and

ai = 0, i = 1, . . . , l. So π(Ur,s) is linearly independent over R. Actually π is a bijection from
Ur,s to π(Ur,s). So

ψ(r, s) = dimR Mr,s =
∣∣π(Ur,s)

∣∣ =
∣∣Ur,s

∣∣.
This completes the proof of the theorem. �

The difference-differential dimension polynomial ψ(t1, t2) carries more invariants than the
“one variable” dimension polynomial φ(t). From the point of view of strength of systems of
difference-differential equations, the polynomial ψ(t1, t2) determines the strength of systems
w.r.t. each of the sets of operators ∆ and Σ while the polynomial φ(t) determines just the general
strength of the systems w.r.t. the set ∆

⋃
Σ .

Example 4.1. Let R be a difference-differential field whose basic sets ∆ and Σ consist of a
single δ and a single σ . Furthermore, let D be the ring of ∆–Σ -operators over R and M = Dh
be a ∆–Σ module whose generator h satisfies the defining equation

(δσ + σ−2)h = 0.

In other words, M is isomorphic to the factor module of a free ∆–Σ module F with a
free generator e by its ∆–Σ submodule N which is a cyclic submodule with a generator
{g = δσ + σ−2

}. We compute the difference-differential dimension polynomial ψ(r, s). By
Theorem 4.1, we need to compute a relative Gröbner basis of N and then ψ(r, s) =

∣∣Ur,s
∣∣.

Clearly the relative Gröbner basis is {g = δσ + σ−2
} (compare Example 3.2). We have

lt(g) = σ−2
∈ Λ2. As the leading term of σg = δσ 2

+ σ−1 is δσ 2
∈ Λ1, we have

lt(λg) = Λ1δσ
2
⋃

Λ2σ
−2.

Put

U ′
r,s :=

{
w ∈ Λ

∣∣ |w|1 ≤ r, |w|2 ≤ s, and w 6= lt≺(λg) for all λ ∈ Λ
}
,

U ′′
r,s :=

{
w ∈ Λ

∣∣ |w|1 ≤ r, |w|2 ≤ s, and |lt≺′(λg)|1 > r for all λ ∈ Λ s.t. w = lt≺(λg)
}
.

Then ∣∣Ur,s
∣∣ =

∣∣U ′
r,s

∣∣+ ∣∣U ′′
r,s

∣∣
and

ψ(r, s) = dimR Mr,s =
∣∣Ur,s

∣∣ = (3r + s + 2)+ (s − 1) = 3r + 2s + 1. �

Example 4.2. Let R be a difference-differential field whose basic sets ∆ = {δ1, δ2} and
Σ = {σ }. Let D be the ring of ∆–Σ -operators over R and M = Dh be a ∆–Σ module whose



Author's personal copy

740 M. Zhou, F. Winkler / Journal of Symbolic Computation 43 (2008) 726–745

generator h satisfies the following defining equations

(δ4
1δ2σ

−3
+ δ2

1δ2σ
3)h = 0,

(δ2
1δ2σ

2
− δ2

1δ2σ
−4)h = 0.

Then M is isomorphic to the factor module of a free ∆–Σ module F with a free generator e by
the ∆–Σ submodule N generated by

{g1 = δ4
1δ2σ

−3
+ δ2

1δ2σ
3, g2 = δ2

1δ2σ
2
− δ2

1δ2σ
−4

}.

Now the generalized term orders “≺”, “≺′” are defined as:

δ
k1
1 δ

k2
2 σ

l
≺ δ

r1
1 δ

r2
2 σ

s
⇐⇒ (|l|, k1 + k2, k1, k2, l) <lex (|s|, r1 + r2, r1, r2, s),

δ
k1
1 δ

k2
2 σ

l
≺

′ δ
r1
1 δ

r2
2 σ

s
⇐⇒ (k1 + k2, |l|, k1, k2, l) <lex (r1 + r2, |s|, r1, r2, s).

For computing the difference-differential dimension polynomial ψ(t1, t2) we first computing
a relative Gröbner basis of N . Let Λ1 = {δ

k1
1 δ

k2
2 σ

l
| l ≥ 0} and Λ2 = {δ

k1
1 δ

k2
2 σ

l
| l ≤ 0}.

Since

σ 3g1 = δ4
1δ2 + δ2

1δ2σ
6,

σg2 = δ2
1δ2σ

3
− δ2

1δ2σ
−3 and g2 = δ2

1δ2σ
2
− δ2

1δ2σ
−4,

it follows that

lt≺′(σ 3g1) = δ4
1δ2 ∈ Λ1

⋂
Λ2,

lt≺′(σg2) = δ2
1δ2σ

3
∈ Λ1 and lt≺′(g2) = δ2

1δ2σ
−4

∈ Λ2.

Then we may see that

{λ ∈ Λ | lt≺′(λg1) ∈ Λ1} = Λ1σ
3

{η ∈ Λ | lt≺′(ηg2) ∈ Λ1} = Λ1σ

and

{lt≺′(λg1) ∈ Λ1 | λ ∈ Λ} = Λ1δ
4
1δ2 {lt≺′(ηg2) ∈ Λ1 | η ∈ Λ} = Λ1δ

2
1δ2σ

3.

Therefore V ′(1, g1, g2) = {v′

1} = {δ4
1δ2σ

3
} and by Definition 3.4,

S′(1, g1, g2, v
′

1) = σ 6g1 − δ2
1σg2 = δ2

1δ2σ
9
+ δ4

1δ2σ
−3.

Since lt≺′(δ2
1δ2σ

9
+ δ4

1δ2σ
−3) = δ4

1δ2σ
−3

= lt≺′(g1), S′(1, g1, g2, v
′

1) can be reduced to
δ2

1δ2σ
9
−δ2

1δ2σ
3 mod g1, and then it can be reduced to 0 mod g2 since δ2

1δ2σ
9
−δ2

1δ2σ
3

= σ 7g2.
Similarly we have

{λ ∈ Λ | lt≺′(λg1) ∈ Λ2} = Λ2σ
3

{η ∈ Λ | lt≺′(ηg2) ∈ Λ2} = Λ2

{lt≺′(λg1) ∈ Λ2 | λ ∈ Λ} = Λ2δ
4
1δ2 {lt≺′(ηg2) ∈ Λ2 | η ∈ Λ} = Λ2δ

2
1δ2σ

−4

V ′(2, g1, g2) = {v′

2} = {δ4
1δ2σ

−4
}.

Then

S′(2, g1, g2, v
′

2) = σ−1g1 + δ2
1 g2 = δ2

1δ2σ
2
+ δ4

1δ2σ
2

= σ 5g1 + δ2
1δ2σ

2
− δ2

1δ2σ
8

= σ 5g1 − σ 6g2

which is reduced to 0 by {g1, g2}. By Theorem 3.2, {g1, g2} is a Gröbner basis with respect to ≺
′

of N .
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Now we compute S-polynomials with respect to ≺.

σg1 = δ4
1δ2σ

−2
+ δ2

1δ2σ
4 and g1 = δ4

1δ2σ
−3

+ δ2
1δ2σ

3,

lt≺(σ
g
1 ) = δ2

1δ2σ
4

∈ Λ1 and lt≺(g1) = δ4
1δ2σ

−3
∈ Λ2

σg2 = δ2
1δ2σ

3
− δ2

1δ2σ
−3 and g2 = δ2

1δ2σ
2
− δ2

1δ2σ
−4,

lt≺(σg2) = δ2
1δ2σ

3
∈ Λ1 and lt≺(g2) = δ2

1δ2σ
−4

∈ Λ2.

It follows that

{λ ∈ Λ | lt≺(λg1) ∈ Λ1} = Λ1σ {η ∈ Λ | lt≺(ηg2) ∈ Λ1} = Λ1σ

{lt≺(λg1) ∈ Λ1 | λ ∈ Λ} = Λ1δ
2
1δ2σ

4
{lt≺(ηg2) ∈ Λ1 | η ∈ Λ} = Λ1δ

2
1δ2σ

3

and

{λ ∈ Λ | lt≺(λg1) ∈ Λ2} = Λ2 {η ∈ Λ | lt≺(ηg2) ∈ Λ2} = Λ2

{lt≺(λg1) ∈ Λ2 | λ ∈ Λ} = Λ2δ
4
1δ2σ

−3
{lt≺(ηg2) ∈ Λ2 | η ∈ Λ} = Λ2δ

2
1δ2σ

−4.

Then

V (1, g1, g2) = {v1} = {δ2
1δ2σ

4
}

V (2, g1, g2) = {v2} = {δ4
1δ2σ

−4
}.

By Definition 3.4 we have

S(1, g1, g2, v1) = σg1 − σ 2g2 = δ4
1δ2σ

−2
+ δ2

1δ2σ
−2.

S(2, g1, g2, v2) = σ−1g1 + δ2
1 g2 = δ4

1δ2σ
2
+ δ2

1δ2σ
2.

Since lt≺(S(1, g1, g2, v1)) = δ4
1δ2σ

−2 /∈ {Λ2δ
4
1δ2σ

−3
}
⋃

{Λ2δ
2
1δ2σ

−4
}, we see that S(1, g1,

g2, v1) is reduced w.r.t. {g1, g2}. Denote it by g3, then S(2, g1, g2, v2) = σ 4g3 can be reduced
relatively mod g3 to 0.

Put G = {g1, g2, g3}. In a similar way we get the S-polynomials of G as follows:

S(1, g1, g3, v3) = δ2
1σg1 − σ 6g3 = δ6

1δ2σ
−2

− δ2
1δ2σ

4

S(2, g1, g3, v4) = g1 − σ−1g3 = δ2
1δ2σ

3
− δ2

1δ2σ
−3

S(1, g2, g3, v5) = δ2
1σg2 − σ 5g3 = −δ4

1δ2σ
−3

− δ2
1δ2σ

3

S(2, g2, g3, v6) = δ2
1 g2 + σ−2g3 = δ4

1δ2σ
2
+ δ2

1δ2σ
−4.

Since lt≺(S(1, g1, g3, v3)) = δ2
1δ2σ

4
= lt≺(σg1), and lt≺′(σg1) = δ4

1δ2σ
−2

≺
′ δ6

1δ2σ
−2

=

lt≺′(S(1, g1, g3, v3)), we see that S(1, g1, g2, v3) can be ≺-reduced to δ6
1δ2σ

−2
+ δ4

1δ2σ
−2

modulo g1 relative to ≺
′. Then it can be reduced relatively modulo g3 to 0, since δ6

1δ2σ
−2

+

δ4
1δ2σ

−2
= δ2

1 g3.
Similarly S(2, g2, g3, v6) = −g2 + σ 4g3 can be relatively reduced to 0 modulo G. Also

S(2, g1, g3, v4) = σg2, S(1, g2, g3, v5) = −g1. So these S-polynomials can be relatively re-
duced to 0 modulo G. Therefore, by Theorem 3.4, G is a relative Gröbner basis of N .

It follows from Theorem 4.1 that the difference-differential dimension polynomial ψ(r, s) is
determined by

ψ(r, s) =
∣∣Ur,s

∣∣ =
∣∣U ′

r,s

∣∣+ ∣∣U ′′
r,s

∣∣,
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where

U ′
r,s :=

{
w ∈ Λ

∣∣ |w|1 ≤ r, |w|2 ≤ s, and w 6= lt≺(λgi ) for all λ ∈ Λ, gi ∈ G
}
,

U ′′
r,s :=

{
w ∈ Λ

∣∣ |w|1 ≤ r, |w|2 ≤ s,

and |lt≺′(λgi )|1 > r for all λ ∈ Λ, gi ∈ G s.t. w = lt≺(λgi )
}
.

From the fact lt≺(λg2) = lt≺′(λg2), lt≺(λg3) = lt≺′(λg3) we see that for j = 2, 3 there is no
w ∈ Λ such that |w|1 ≤ r , w = lt≺(λg j ) and lt≺′(λg j )]|1 > r . Furthermore, if λ ∈ Λ2 then
lt≺(λg1) = lt≺′(λg1); if λ ∈ Λ1 then {w ∈ Λ|w = lt≺(λσg1)} ⊂ {w ∈ Λ|w = lt≺(λσg2)}. This
means that the condition in U ′′

r,s does not hold for such w. So we conclude that U ′′
r,s = ∅. Thus,

finally, from

U ′
r,s = {w = δ

k1
1 δ

k2
2 σ

l
∣∣ k1 + k2 ≤ r, | l | ≤ s,

(k1, k2, l) /∈ (2, 1, 3)+ {N3
}, (k1, k2, l) /∈ (2, 1,−4)+ {N2

× (−N)}
(k1, k2, l) /∈ (4, 1, 0)+ {N2

× Z}}

we get for all sufficiently large r, s ∈ N

ψ(r, s) =
∣∣U ′

r,s

∣∣
= (r + 1)(2s + 1)+ (r − 3)[2(2s + 1)+ 12] + [2(2s + 1)+ 6]

+ [2(2s + 1)] + (2s + 1)
= 6rs + 15r − 30. �

Example 4.3. Let R , ∆, Σ and D be the same as in Example 4.1. Let M = Dh1 + Dh2 be a
∆–Σ module whose generators h1, h2 satisfy the defining equations

δσh1 + σ−2h2 = 0,
δ2σh1 + δh2 = 0.

Then M is isomorphic to the factor module of a free ∆–Σ module F with free generators e1, e2
by its ∆–Σ submodule N generated by

{g1 = δσe1 + σ−2e2, g2 = δ2σe1 + δe2}.

We compute the relative Gröbner basis of N , the cardinality of Ur,s and ψ(r, s).
Similarly as in Example 4.2, we get

S′(1, g1, g2, v1) = S′(2, g1, g2, v2) = δg1 − g2 = δσ−2e2 − δe2 = g3.

Since lt≺′(λg1) ∈ Λe1, lt≺′(λg2) ∈ Λe1 and lt≺′(λg3) ∈ Λe2, we see that S′(k, gi , g3, vs) = 0,
for all i = 1, 2, k = 1, 2. So G ′

= {g1, g2, g3} is a Gröbner basis with respect to ≺
′ of N .

We compute S-polynomials with respect to ≺ as follows:

σg1 = δσ 2e1 + σ−1e2, g1 = δσe1 + σ−2e2,

g2 = δ2σe1 + δe2, σ−1g2 = δ2e1 + δσ−1e2,

σg3 = δσ−1e2 − δσe2, g3 = δσ−2e2 − δe2

(underlined terms denote leading terms). Then

S(1, g1, g2, v
(1)
12 ) = δσg1 − σg2 = δσ−1e2 − δσe2 = σg3

S(2, g1, g2, v
(2)
12 ) = δg1 − σ−2g2 = δ2σe1 − δ2σ−1e1
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which can be reduced relatively mod g2 to δ2σ−1e1 + δe2 = g4. Then

σg4 = δ2e1 + δσe2 g4 = δ2σ−1e1 + δe2

and

S(1, g1, g3, v
(1)
13 ) = 0, S(1, g2, g3, v

(1)
23 ) = 0

S(2, g1, g3, v
(2)
13 ) = δg1 − g3 = δ2σe1 + δe2 = g2

S(2, g2, g3, v
(2)
23 ) = σ−2g1 − g3 = δ2σ−1e1 + δe2 = g4

S(1, g1, g4, v
(1)
14 ) = 0, S(2, g1, g4, v

(2)
14 ) = 0

S(1, g2, g4, v
(1)
24 ) = 0, S(2, g2, g4, v

(2)
24 ) = 0

S(2, g3, g4, v
(2)
34 ) = 0

S(1, g3, g4, v
(1)
34 ) = σg3 + σg4 = δ2e1 + δσ−1e2 = σ−1g2.

So G = {g1, g2, g3, g4} is a ≺-Gröbner basis of N relative to ≺
′.

Now we determine the dimension polynomial

ψ(r, s) =
∣∣Ur,s

∣∣ =
∣∣U ′

r,s

∣∣+ ∣∣U ′′
r,s

∣∣.
From

U ′
r,s =

{
w ∈ ΛE

∣∣ |w|1 ≤ r, |w|2 ≤ s and w 6= lt≺(λgi ) for all λ ∈ Λ, gi ∈ G
}

=
{
w ∈ Λe1

∣∣ |w|1 ≤ r, |w|2 ≤ s
and w 6= lt≺(λσg1), w 6= lt≺(λg2), w 6= lt≺(λσg4)

}
∪{
w ∈ Λe2

∣∣ |w|1 ≤ r, |w|2 ≤ s
and w 6= lt≺(λg1), w 6= lt≺(λσ−1g2), w 6= lt≺(λσg3),

w 6= lt≺(λg3), w 6= lt≺(λσg4)
}

we see∣∣U ′
r,s

∣∣ = (2s + 1)+ (s + 2)+ (r − 1)+ (s + 2)+ r = 2r + 4s + 4.

For determining
∣∣U ′′

r,s

∣∣ we only need to consider g1, σ
−1g2, σg4, because lt≺(λσg j ) =

lt≺′(λσg j ) for j = 1, 3, and lt≺(λg j ) = lt≺′(λg j ) for j = 2, 3, 4.{
w = lt≺(λg1)

∣∣ λ ∈ Λ2e2, |w|1 ≤ r, |w|2 ≤ s, |lt≺′(λg1)|1 > r
}

=
{
w = δkσ−lσ−2e2

∣∣ ≤ r, k + 1 > r
}

=
{
w = δrσ−(l+2)e2

∣∣ l ≥ 0
}
.

But w = δrσ−(l+2)e2 = lt≺(δr−1σ−l g3) and |lt≺′(δr−1σ−l g3)|1 ≤ r , so{
w = lt≺(λg1)

∣∣ λ ∈ Λ2e2, |w|1 ≤ r, |w|2 ≤ s,

and |lt≺′(λg j )|1 > r for all λ ∈ Λ, g j ∈ G s.t. w = lt≺(λg j )
}

= ∅.
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Similarly we get{
w = lt≺(λσ

−1g2)
∣∣ λ ∈ Λ2e2, |w|1 ≤ r, |w|2 ≤ s,

and |lt≺′(λg j )|1 > r for all λ ∈ Λ, g j ∈ G s.t. w = lt≺(λg j )
}

=
{
δrσ−(l+1)e2

∣∣ l = 0
}
,

and finally{
w = lt≺(λσg4)

∣∣ λ ∈ Λ1e2, |w|1 ≤ r, |w|2 ≤ s,

and |lt≺′(λg j )|1 > r for all λ ∈ Λ, g j ∈ G s.t. w = lt≺(λg j )
}

=
{
δrσ l+1e2

∣∣ l ≥ 0, l + 1 ≤ s
}
.

Combining all these partial results, we see that∣∣U ′′
r,s

∣∣ = 0 + 1 + s = s + 1,

and therefore

ψ(r, s) =
∣∣Ur,s

∣∣ =
∣∣U ′

r,s

∣∣+ ∣∣U ′′
r,s

∣∣ = 2r + 5s + 5

for all sufficiently large r, s ∈ N. �
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Takayama, N., 1989. Gröbner basis and the problem of contiguous relations. Japan J. Appl. Math. 6, 147–160.
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